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Calculating exact propagators in single-file systems via the reflection principle

Christian Ro¨denbeck, Jo¨rg Kärger, and Karsten Hahn
Universität Leipzig, Fakulta¨t für Physik und Geowissenschaften, Linne´straße 5, D-04103 Leipzig, Germany

~Received 31 July 1997!

The dynamics of tagged particles in diffusive single-file systems~one-dimensional systems where the par-
ticles are not able to pass each other! is investigated. The presented approach, based on the reflection principle,
yields exact propagators for quite a general class of systems. Examples are considered explicitly and compared
both with results of computer simulations and, in one case, with the asymptotic behavior known from the
literature. Practical implications of the results to the interpretation of data from scattering experiments and to
the application of single files for the controlled release of particles are discussed.@S1063-651X~98!02604-X#

PACS number~s!: 05.60.1w, 66.30.2h, 02.50.Ey, 02.50.Ng
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I. INTRODUCTION

One-dimensional diffusion of a set of particles that are
able to change their order is known assingle-file diffusion.
Quite a number of systems in different fields of science sh
such a behavior, e.g., superionic or organic conducters@1#,
ion channels through biological membranes@2#, or many
zeolites with a one-dimensional channel system~Mordenite,
L, AlPO4-5, etc.! @3#. While the collective motion of the
particles in such a single-file system proceeds just like tha
independent particles, the dynamics oftagged particlesis
considerably different@4,5#. Its analytical treatment prove
complicated because the motions of all individual partic
are correlated to each other over the entire system@6#. Most
theoretical investigations in the literature are, for this reas
restricted to mean quantities or limiting cases. In@7#, a for-
malism is developed yielding thepropagator of a tagged
pointlike particle in a single-file system on the basis of t
propagator of an isolated~i.e., noninteracting! particle in the
same system. Due to an approximation partly neglecting
aforementioned correlations, the result is only valid for s
ficiently large times. A number of interesting phenome
e.g., the transition from the initial Fickian behavior to sing
file diffusion, or the diffusion of tagged particles in finit
single-file systems, however, involve rather short times
covered by the range of validity of@7#.

The formalism presented in this paper is free of appro
mations, i.e., it considers the correlations completely, a
therefore yields exact propagators for all observation tim
It may be applied to a wide class of single-file systems,
cluding systems without translational invariance or with
homogeneous initial particle densities. Generally, the p
ticles are assumed to be pointlike and diffusing in
continuous one-dimensional space.

In order to illustrate the application of the general form
las, special systems will be considered at certain stages o
calculation. Two examples are, in addition, of practical r
evance.

Example 1.Many experimentally investigated single-fi
systems may be idealized asinfinite, homogeneously occu
pied channels. As powerful tools, quasielastic neutron sca
tering @8# and pulsed field gradient NMR@9,10# are widely
571063-651X/98/57~4!/4382~16!/$15.00
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used in this field. The interpretation of their data relies on
assumption that the propagator of tagged particles i
Gaussian@11,3#. For large observation times, the validity o
this assumption has been shown analytically@7,12#. Some
experiments, such as neutron scattering at zeolitic single
systems@13#, however, are able to resolve rather short obs
vation times, belonging to the aforementioned transition
gion between normal and single-file diffusion where ex
propagators have not yet been obtained. This paper will c
this gap.

Example 2.Applications such as controlled-release sy
tems @14# require systems that release particles in a slo
well-defined way. In single-file systems, tracer processes
much slower than in systems undergoing normal diffus
due to the strong mutual hindrance of the particles@15#.
Moreover, the particles leave the channel in exactly the sa
order as they entered it previously. As a basis of a quan
tive analysis of the release, we will consider the followin
process. Initially, the finite single-file channel is in sorptio
equilibrium with an infinite external reservoir of particles s
that the channel is homogeneously occupied with a gi
particle concentrationc. At time zero, the channel opening
are exposed to vacuum, whence the particles will, one a
another, be desorbed from the file without any chance
return. By means of the calculation presented in this pa
an individual of these particles starting at an arbitrary giv
position within such afinite channel with absorbing bound
aries can be traced.

The motion of particles in a single-file system is dete
mined by two kinds of influences: first, the particle-chann
interaction, which acts on each individual particle causing
to move, and second, the particle-particle interaction, wh
inhibits the particles from changing their order. Section II,
a preliminary, is devoted to the first kind of influence, th
considering anisolated particlein the system.

Prepared in this way, Sec. III turns to a single-file syst
occupied by afinite number of particlesthat influence each
other via the particle-particle interaction. Three steps of c
culation lead to a general expression of the propagator
tagged particle, which is subsequently applied to spe
single-file systems.

The aforementioned examples, however, involve aninfi-
4382 © 1998 The American Physical Society
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57 4383CALCULATING EXACT PROPAGATORS IN SINGLE- . . .
nite number of particles. Thus, as a fourth calculation ste
Sec. IV considers this limit. After deriving the general prop
gator, the examples are explicitly treated and discussed.
Conclusion indicates possible generalizations.

II. PRELIMINARY: THE ISOLATED PARTICLE

A. The particle-channel interaction

The interaction between each individual particle and
channel is described by theisolated-particle propagator
f (xua). Generally, the presented formalism assumes that
propagator represents the solution of a partial differen
equation that follows from the underlying model of diffu
sion. The variablex denotes the position of the isolated pa
ticle at timet, while a is the initial position at time 0. The
propagator represents the conditional probability density
the particle position, i.e.,f (xua)dx gives the propability that
the particle is to be found betweenx and x1dx under the
condition that it started ata. @If needed, the time argumen
will be written as a superscriptf t(xua), but usually it will,
for lucidity, be omitted.# The propagator is a normalized di
tribution, i.e.,

E
2`

`

f ~xua!dx51. ~1!

In addition to the probability densityf (xua), the correspond-
ing distribution function

g~xua!:5E
2`

x

f ~jua!dj ~2!

will be required. In the following, several well-known rela
tions concerning the dynamics of an isolated particle in so
special systems are listed.

B. Example: The infinite channel

The most common differential equation describing diff
sional processes is Fick’s second law

ḟ ~xua!5D
]2f

]x2
~xua!, ~3!

known as the diffusion equation. If the particle starts at p
sition a one has the initial condition

f 0~xua!5d~x2a!. ~4!

The solution for an infinite channel is given by

f ~xua!5 f i~xua!5F~x2a!, ~5!

where F(u) is a shorthand for the Gaussian distributi
given explicitly in Eq. ~A1! in the Appendix. The corre-
sponding distribution function reads, according to Eqs.~2!
and ~A4!,

gi~xua!5G~x2a!, ~6!

where the functionG(x) is defined in Eq.~A2!.
-
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We remark that Eq.~3! is by no means a unique choice o
a differential equation modeling diffusion. Instead, o
might make use of the telegrapher’s equation

D

s2
f̈ ~xua!1 ḟ ~xua!5D

]2f

]x2
~xua!, ~7!

which takes into account that, for very short timest, the
particle actually moves ballistically rather than diffusivel
The parameters can be interpreted as the finite velocity
the particle@16#. For larger times, this equation coincide
with the diffusion equation.

C. Example: The finite channel with reflecting boundaries

Now consider a finite channel of lengthL, extending from
xL50 to xR5L. At both boundaries, the file can be plugge
up: The particle will be reflected back on reaching the
Consequently, the probability fluxes through the bounda
disappear. Since, according to Fick’s first law, the proba
ity flux is proportional to the first derivative of the propag
tor, this yields the well-known boundary conditions

] f rr

]x
~0ua!50,

] f rr

]x
~Lua!50. ~8!

The propagator for this system is obtained as a solution
the diffusion equation~3! subject to these boundary cond
tions. This solution can easily be obtained from that of t
infinite system~5! via the well-known reflection principle
@17,10#. If only one reflecting boundary were present, say
the left boundary, the solution would have to be reflected a
added, while the density beyond the boundary would hav
be set zero:

f r~xua!5H F~x2a!1F~x1a!, x>0

0, x,0.
~9!

In the presence of two reflecting boundaries, each bound
in effect, ‘‘reflects’’ the other boundary as well, resulting
an infinite number of ‘‘true’’ or ‘‘reflected’’ boundaries and
therefore in an infinite number of reflected solutions (0<x
<L, 0<a<L):

f r~xua!5 (
k52`

`

@F~x2a12kL!1F~x1a12kL!#.

~10!

The corresponding distribution function follows as

gr~xua!5 (
k52`

`

@G~x2a12kL!2G~2a12kL!

1G~x1a12kL!2G~a12kL!#. ~11!

D. Example: The finite channel with absorbing boundaries

In contrast to Sec. II C, any particle reaching one of t
boundaries is now assumed to be absorbed immediately
the surrounding space from which it will never return in
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the channel. This implies that the probability of finding the isolated particle at one of the boundaries vanishes, whe
boundary conditions read

f aa~0ua!50, f aa~Lua!50. ~12!

The propagator will only be required for 0<x<L, i.e., for positions inside the channel. In this region, it is given by

f aa~xua!5H (
k52`

`

@F~x2a12kL!2F~x1a12kL!#, 0<a<L

0, L,a.

~13!

~In the case 0<a<L where the isolated particle starts at an arbitrary position within the channel, the propagator is, as
II C, obtained via the reflection principle, though by antireflection, i.e., subtracting rather than adding the reflected so
In the casea.L where the particle initially is already situated to the right of the right boundary, i.e., outside the chann
probability of finding the particle at any position within the channel vanishes because we assumed that it cannot e
channel from outside. The missing casea,0 will not be required in the latter calculation.!

In order to obtain the corresponding distribution function one needs the probability that the particle is situated to th
the left boundary, i.e., it has been desorbed at this side of the channel,

E
2`

0

f aa~xua!dx5H 2(
k50

`

@G~2L2a12kL!2G~a12kL!#, 0<a<L

0, L,a.

~14!

~This expression follows from the time integral over the flux out of the left boundary.! Then the distribution function can b
calculated via its definition by Eq.~2!:

gaa~xua!55 (
k50

`

[G~x12L2a12kL!1G~2x12L2a12kL!

2G~x1a12kL!2G~2x1a12kL!], 0<a<L

0, L,a.

~15!
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III. THE SINGLE-FILE SYSTEM WITH FINITELY MANY
PARTICLES

A. First step: The total propagator

In Sec. II a system with an isolated pointlike particle in
diffusional channel was considered. The state of this sys
was given by the coordinatex of the particle and the dynam
ics could be described by the propagatorf (xua) characteriz-
ing the particle-channel interaction including the driving d
fusion mechanism.

If severalpointlike particles diffuse in the same chann
the state may be described by the vectorx5( . . . ,xi , . . . )
of the coordinatesxi of the individual particles. In the case o
free particles ~i.e., without particle-particle interaction! the
coordinatesxi are statistically independent and the to
propagator~i.e., the propagator of the system as a whole! is
given by

F~xua!5)
i

f ~xi uai !. ~16!

This expression can be interpreted as the solution of the
ferential equation of the isolated particle in the high
dimensional state spaceS of the vectorsx, where boundaries
of the channel, if any, cause corresponding boundary pla
perpendicular to the axes ofS.
m

l

l

if-
-

es

The single-file system is characterized by the impossi
ity that two particles change places so that the order of
coordinatesxi is strictly preserved during all the dynamic
development of the system. This implies that only a cert
sectionS8 of the spaceS is accessible: If the initial order o
two arbitrary coordinates isai,aj , all points withxi.xj are
forbidden. Thus the accessible sectionS8 of the state space is
demarcated by the planesxi5xj . The single-file property
can therefore be expressed as the condition that the prob
ity flux through these planes vanishes, i.e., these planes
as reflecting boundaries. This means that the total propag
P(xua) of the single-file system can be obtained as the so
tion of the higher-dimensional differential equation subje
to the ~additional! boundary conditions

]P~xua!

]n U
xi5xj

50 ; iÞ j ~17!

~derivative normal to the planexi5xj ), which can be trans-
formed to

S ]P~xua!

]xi
2

]P~xua!

]xj
D U

xi5xj

50 ; iÞ j . ~18!
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As was already done in the case of the channel with refl
ing boundaries, this boundary condition can be satisfied
ing the reflection principle: If the solution is reflected at a
plane and added to the original solution, the derivative of
sum normal to this plane vanishes. If several reflect
planes are present, all the reflected planes act as refle
planes as well and one has to consider all possible comb
tions of reflections.

For the present problem, reflection at a planexi5xj sim-
ply means exchanging the coordinatesxi and xj . The pos-
sible combinations of reflections are given by the permu
tions of the coordinates, so that

P~xua!5H (
p

F~Vpxua!, xPS8

0, x¹S8,

~19!

where the sum is extended over all permutationsp andVp is
the corresponding matrix exchanging the coordina

Proof. Consider an arbitrary pair of permutations

p15S . . . ,
k
xi

, . . . ,
l
xj

, . . . D , p25S . . . ,
k
xj

, . . . ,
l
xi

, . . . D ,

i.e., inp1 the coordinatexi holds the place of coordinatexk ,
the coordinatexj holds the place of coordinatexl , andp2 is
equal except for the exchange of coordinatesxi andxj . Now
differentiateP(xua) with respect toxi or xj , respectively,
and take the result at an arbitrary pointy ~only the terms
belonging to the permutationsp1 and p2, respectively, are
written!:

]P~xua!

]xi
Ux5y5•••1

]F~xua!

]xk
U

. . . ,xk5yi , . . . ,xl5yj , . . .

1•••

1
]F~xua!

]xl
U

. . . ,xk5yj , . . . ,xl5yi , . . .

1•••,

]P~xua!

]xi
Ux5y5•••1

]F~xua!

]xl
U

. . . ,xk5yi , . . . ,xl5yj , . . .

1•••

1
]F~xua!

]xk
U

. . . ,xk5yj , . . . ,xl5yi , . . .

1•••.

If yi5yj both expressions are equal, whenceP(xua) satisfies
the boundary condition~18! for any function F(xua).

P(xua) can be expressed in a way more convenient to
further calculations by permutating the initial coordinatesa
rather thanx:

P~xua!5H (
p

F~xuVpa!, xPS8

0, x¹S8.

~20!

Proof. The dependence ofF(xua) on the individual coor-
dinatesxi differs only in the parametersai . Since exchang-
ing two coordinates means exchanging the individuality
the dependence on these coordinates it is completely equ
lent to exchanging the values of the corresponding com
nents ofa.
t-
s-

e
n
ion
a-

-
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We remark that the planesxi5xj divide the state spaceS
into a large number of disjunct sections. All these sectio
are geometrically congruent: They can be mapped onto e
other by reflection at their demarcating planes. Each of th
sections correponds to exactly one order of the coordin
of the particles. This implies that the initial order determin
which of these sections represents the accessible sectioS8
@18#.

B. Second step: The tagged particle

Let us now consider an individual tagged particle, chos
out of the identical particles of the single-file system. It
labeled by the index 0, i.e., its coordinate isx0. There areRL
left neighbors with the coordinatesx2RL

, . . . ,x21 and RR

right neighbors with the coordinatesx1 , . . . ,xRR
. The order

of the coordinates is

2`<x2RL
,x2RL11,•••,x21,x0,x1,•••,xRR21

,xRR
<`. ~21!

The propagator of the tagged particle is obtained from
total propagator by integration over all other coordinates

p~x0ua!

5E
2`

`

dx21E
2`

`

dx22•••E
2`

`

dx1E
2`

`

dx2•••P~xua!.

~22!

Now Eq. ~20! is inserted, whence the range of integration
limited over the accessible space sectionS corresponding to
the order~21!:

p~x0ua!5E
2`

x0
dx21E

2`

x21
dx22•••

3E
x0

`

dx1E
x1

`

dx2•••(
p

F~xuVpa!. ~23!

This expression, however, cannot be further evaluated.
get a simpler expression one can invoke the fact that, fr
the point of view of the tagged particle, all its left neighbo
are indistinguishable from each other, as are the right ne
bors. The accessible region of the tagged particle is limi
by the positions of its two next neighbors, irrespective
which individual particles occupy these positions. This im
plies that the propagator of the tagged particle does
change if both the left and right neighbors are allowed
mutually change their order. Only exchanges with the tag
particle have to remain excluded. Thus one can do with
much weaker condition

2`<x2RL
,x0 , . . . ,2`<x21,x0 ,

x0,x1<`, . . . ,x0,xRR
<` ~24!

and extend the range of integration over the modified acc
sible space sectionS9 corresponding to this condition. Math
ematically, this is possible because of the congruence of
space sections belonging to different orders of the coo
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nates. For compensation, however, a normalizationZ has to
be introduced. If, in addition, Eq.~16! is inserted, one arrives
at

p~x0ua!5
1

Z(
p

E
2`

x0
dx2RL

•••E
2`

x0
dx21

3E
x0

`

dx1•••E
x0

`

dxRR)i
f „xi u~Vpa! i…. ~25!

Consider an arbitrary term of this sum~corresponding to a
given permutationp) and abbreviate the permutated initi
vector byb:5Vpa. One observes that each integral appl
to one of the functionsf „xi u(Vpa) i… only and that one of the
functions remains without integration. According to the si
of the indexi , this results, therefore, in three types of facto
making up the considered term,

E
2`

x0
f ~xi ubi !dxi ~ i ,0,L-type factor!, ~26!

E
x0

`

f ~xi ubi !dxi ~ i .0, R-type factor!, ~27!

f ~x0ub0! ~ i 50, 0-type factor!. ~28!

@In the following, the notation ‘‘factor’’ will consistently re-
fer to these very factors of the terms of Eq.~25!.# Using the
distribution function defined in Eq.~2!, one can write the
L-type factor in the formg(x0ubi) and theR-type factor due
to Eqs.~1! and ~26! in the form@12g(x0ubi)#. The term of
Eq. ~25! considered can thus be written as

T~x0ub!5g~x0ub2RL
!•••g~x0ub21! f ~x0ub0!

3@12g~x0ub1!#•••@12g~x0ubRR
!#. ~29!

The normalizationZ is obtained from the condition

E
2`

`

p~x0ua!dx051, ~30!

which yields via Eqs.~25! and ~29!

Z5E
2`

`

(
p

T~x0uVpa!dx0 . ~31!

We define functions

gi~x0!:5g~x0uai !, ~32!

which give

gi8~x0!5 f ~x0uai !. ~33!

If Eq. ~29! is multiplied out the termsT(x0uVpa) can be
written as sums of subterms, each of these subterms con
ing of h factors (RL11<h<RL111RR), whereh21 fac-
tors are of the formgi(x0) and one factor is of the form
gi8(x0). The sign of the subterm is given by

~21!h2RL21. ~34!
s

ist-

Now we group all the subterms of Eq.~31! ~i.e.,all subterms
of all terms T) in such a way that every group contain
exactly h subterms, each of which consisting of exactlyh
factors; in a given group, the occurring indicesi k (k
51, . . . ,h) of the factors of the subterms belong to the sa
subset of the set of possible indices; and the subterms
given group differ in the index of the factorgi8(x0). Then
the integral over such a group can be found via the iden

E
2`

`

~gi 1
8 gi 2

•••gi h
1gi 1

gi 2
8 •••gi h

1•••1gi 1
gi 2

•••gi h
8 !dx0

5@gi 1
gi 2

•••gi h
#2`

` 51, ~35!

which follows from gi(2`)50 andgi(`)51 due to Eqs.
~1! and ~2!. This means that the value of the integral ove
group is equal to the~common! sign ~34! of its subterms and
therefore depends only onh. For each h, there are
(h2RL21

RR ) (RL111RR)! subterms „@RL111RR#! is the

number of all terms and (h2RL21
RR ) is the number of subterm

per term withh factors because it is the number of possib
ties to choose the (h2RL21) R-type factors contributing
with gi(x0) rather than with 1…. These subterms are parte
into groups ofh members each, whence one gets

Z5 (
h5RL11

RL111RR

~21!h2RL21
S RR

h2RL21D ~RL111RR!!

h

5~RL111RR!! (
k50

RR ~21!k

RL111k S RR

k D . ~36!

The sum can be done analytically@19# and gives

Z5RL!RR!. ~37!

This result allows an illustrative interpretation: Since w
have used the modified order~24! of the allowed coordinates
rather than the true order~21!, we have increased the size o
the accessible section of the state space. While the orig
sectionS8 corresponds to only one permutation of the co
dinates, the modified sectionS9 corresponds to a large num
ber of permutations. Thus the increased section is as m
times larger than the original one as the number of perm
tions allowed by the modified order. The obtained norm
ization Z gives exactly this number.

C. Third step: The propagator of the tagged particle

The propagatorp(x0ua) is valid for the initital condition
a, fixing explicitly the initial positions of all particles. Now
we assume that the left neighbors of the tagged particle
tially were randomly distributed over the interval2`<aj
<a0. The probability density of the initial coordinateaj of
any individual particle is%L(aj ua0), which shall be common
to all left neighbors. Likewise, the right neighbors shall
distributed over a0<aj<` according to %R(aj ua0). Of
course, the densities%L and%R have to be normalized:
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E
2`

a0
%L~aua0!da5E

a0

`

%R~aua0!da51. ~38!

Taking the mean of the propagator over all possible init
conditions according to these densities, one obtains

p~x0ua0!5E
2`

a0
da2RL

•••E
2`

a0
da21E

a0

`

da1•••

3E
a0

`

daRR
%L~a2RL

ua0!•••

3%L~a21ua0!%R~a1ua0!•••%R~aRR
ua0!p~x0ua!.

~39!

When this mean is performed with the individual term
T(x0uVpa) of p(x0ua), there is a situation analogous to th
observed on discussing Eq.~25!: Again each integral of Eq
~39! applies to only one factor of the termsT(x0uVpa); there
are two different types of integrals according to the sign
the indexj of the initial coordinate,

E
2`

a0
•••%L~aj ua0!daj ~ j ,0, L-type operation!,

~40!

E
a0

`

•••%R~aj ua0!daj ~ j .0, R-type operation!, ~41!

and one factor of the term remains without integration~0-
type operation!. The respective permutationp determines
which of the operations is carried out on which of the fact
of the termT(x0uVpa). Since every combination is possibl
nine types of quantities occur as the factors of the resul
termsT̄p(x0ua0) of p(x0ua0) ~where the first index gives th
type of factor and the second index the type of operation!:

kLL5kLL~x0ua0!5E
2`

a0
g~x0ua!%L~aua0!da,

k0L5k0L~x0ua0!5E
2`

a0
f ~x0ua!%L~aua0!da,

kRL5kRL~x0ua0!5E
2`

a0
@12g~x0ua!#%L~aua0!da,

kL05kL0~x0ua0!5g~x0ua0!,

k005k00~x0ua0!5 f ~x0ua0!, ~42!

kR05kR0~x0ua0!5@12g~x0ua0!#,

kLR5kLR~x0ua0!5E
a0

`

g~x0ua!%R~aua0!da,

k0R5k0R~x0ua0!5E
a0

`

f ~x0ua!%R~aua0!da,
l

f

s

g

kRR5kRR~x0ua0!5E
a0

`

@12g~x0ua!#%R~aua0!da.

Though these expressions arise in a purely mathema
way, they can be interpreted physically. The express
k0R(x0ua0)dx0, e.g., gives the probability that an isolate
particle that starts at a random position in accordance w
the density%R(aua0) occupies, at timet, a position between
x0 andx01dx0. Analogously, the expressionkLR(x0ua0) co-
incides with the probability that this particle is to be found
an arbitrary position to the left ofx0, i.e., it started as a righ
neighbor but would now, if the particle-particle interactio
were absent, be on the left-hand side of the tagged parti

All the quantities defined in Eq.~42! do not depend any-
more on the particular values of the indicesi and j , but only
on their signs, i.e., only on thetypesof factor and operation.
This implies that all termsT̄p(x0ua0) that contain the same
numbersof these quantities are equal. It is now combinat
ics that tells us what patterns of products out of these qu
tities are possible and how many~identical! termsT̄p(x0ua0)
belong to each of these patterns.

All in all, there are (RL111RR)! permutations of the
RL111RR coordinates and, consequently, as many ter
T̄p(x0ua0) in the sum ofp(x0ua0). At first, we consider the
type of factor ofT(x0uVpa) that remains without integration

Case 0.The 0-type operation is applied to the 0-type fa
tor. Consequently, the resulting termT̄p(x0ua0) contains
k00. All other factors of this term can be eitherkLL , kLR ,
kRL , or kRR. Their respective numbers arehLL , hLR , hRL ,
and hRR. The task to be solved is to determine how ma
possibilities there are to allotr L

o5RL L-type operations and
r R

o5RR R-type operations onr L
f 5RL L-type factors andr R

f

5RR R-type factors in such a way thathLL factors of the
kind kLL ,hLR of the kindkLR , etc., are formed. At first, one
observes that

hLL1hLR5r L
f , hRL1hRR5r R

f , ~43!

hLL1hRL5r L
o , hLR1hRR5r R

o .

This means that if, e.g.,hLL is chosen, all other numbers ar
determined:

hLL5h, hLR5r L
f 2h, hRL5r L

o2h,

hRR5h1r R
o2r L

f . ~44!

The following list gives the successive choices that have
be made in order to select a special combination of ope
tions and factors, together with the corresponding numbe
possibilities ifhLL shall attain a given valueh.

~i! (
h

r L
o

!: Out of theL-type operations,hLL5h are chosen
to be applied toL-type factors.~Consequently, the remainin
L-type operations are applied toR-type factors.!

~ii ! ~
r B

0

r L
f 2h

!: Out of theR-type operations,hLR5r L
f 2h

are chosen to be applied to the remainingL-type factors.
~Consequently, the remainingR-type operations are applie
to the remainingR-type factors.!
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~iii ! r L
f !: The operations that have been chosen for

L-type factors can be arranged into an arbitrary order~i.e.,
permutated!.

~iv! r R
f !: Likewise, the operations that have been chos

for the R-type factors can be arranged.

The number of~equal! terms withhLL5h that fall into case
0 is the product of these numbers; if the values ofr L

f , etc., of
case 0 are inserted one gets

H0~h!5S RL

h D S RR

RL2hDRL!RR!. ~45!

The range of allowed valuesh depends onRL andRR . Here
and in the following we restrict ourselves, without loss
generality, to the caseRL<RR and make use of the abbre
viation

DR5RR2RL>0. ~46!

Then the variableh5hLL can take all values from 0 toRL .
The total number of case-0 terms is (RL111RR)!/(RL11
1RR)5(RL1RR)! because we have chosen the 0-type f
tor f (x0ua0) out of all theRL111RR factors. This can be
used to test Eq.~45!: The validity of the identity

(h50

R
L H0(h)5(RL1RR)! confirms the result. Now we are

able to write down the sum of all terms that belong to case

S05 (
h50

RL

H0~h!k00kLL
h kLR

RL2hkRL
RL2hkRR

h1DR . ~47!

Case L.The factor that remains without integration is ofL
type. The resulting term ofp(x0ua0) therefore containskL0.
This case splits further into subcases according to whe
the operation acting on the factorf (x0ua0) is of L-type or
R-type.

Subcase LL.The resulting term additionally contains th
factork0L . The remainingRL1RR21 factors can, as in cas
0, be eitherkLL , kRL , kLR , or kRR. One now hasr L

f 5RL

21 ~one of theL-type factors is already ‘‘consumed’’ by th
0-type operation!, r R

f 5RR , r L
o5RL21 ~one of theL-type

operations is already applied to the 0-type factor!, and r R
o

5RR . In addition to the possible choices in case 0 one h
independent of the numbershLL , etc., RL possibilities to
choose theL-type factor to which the 0-type operation
applied and furtherRL possibilities to choose theL-type op-
eration that is applied to the 0-type factor. Thus

HLL~h!5S RL21
h D S RR

RL212hD ~RL21!!RR!RL
2 . ~48!

The maximal value ofh5hLL is reduced toRL21. The total
number of terms belonging to subcaseLL is

~RL111RR!!
RL

RL111RR

RL

RL1RR
5~RL1RR21!!RL

2

because of the probabilities of choosing theL-type factor out
of all factors and theL-type operation out of theL-type or
R-type operations. The sum of all terms of the subcase re
e

n

f

-

:

er

s,

ds

SLL5 (
h50

RL21

HLL~h!kL0k0LkLL
h kLR

RL212hkRL
RL212hkRR

h1DR11 .

~49!

Subcase LR.The resulting term additionally contains the fa
tor k0R . One hasr L

f 5RL21, r R
f 5RR , r L

o5RL , and r R
o

5RR21 and there areRL possibilities of choosing the
L-type factor andRR possibilities of choosing theR-type
operation, so that

HLR~h!5S RL

h D S RR21
RL212hD ~RL21!!RR!RLRR , ~50!

SLR5 (
h50

RL21

HLR~h!kL0k0RkLL
h kLR

RL212hkRL
RL2hkRR

h1DR .

~51!

Case R.Analogous considerations yield the expressions
the subcasesRL andRR:

HRL~h!5S RL21
h D S RR

RL2hDRL! ~RR21!!RLRR , ~52!

SRL5 (
h50

RL21

HRL~h!kR0k0LkLL
h kLR

RL2hkRL
RL212hkRR

h1DR ,

~53!

HRR~h!5S RL

h D S RR21
RL2hDRL! ~RR21!!RR

2 , ~54!

SRR5 (
h5 H01J

RL

HRR~h!kR0k0RkLL
h kLR

RL2hkRL
RL2hkRR

h1DR21 .

~55!

In subcaseRR, the range ofh needs special attention: Fo
RL,RR , the range comprises, as in case 0, all values from
to RL , but for RL5RR there is at least oneL-type operation
more thanR-type factors so thath cannot be less than 1
Thus the summation starts ath50 if RL,RR and ath51 if
RL5RR . The summation range in bothSRR and SRL, how-
ever, can be altered into the full range from 0 toRL without
changing the sum because the added terms contain (RL

RL21)

50.
Now the set of cases is complete and the propagator

be written as

p~x0ua0!5
1

Z
~S01SLL1SLR1SRL1SRR!. ~56!

If the abbreviation

y:5
kRRkLL

kRLkLR
~57!

is introduced, the five terms may be simplified in the follow
ing way:
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1

Z
S05k00kLR

RL kRL
RL kRR

DR(
h50

RL S RL

h D S RR

RL2hD yh,

1

Z
SLL5RLkL0k0LkLR

RL21kRL
RL21kRR

DR11 (
h50

RL21 S RL21
h D

3S RR

RL212hD yh,

1

Z
SLR5RRkL0k0RkLR

RL21kRL
RL kRR

DR (
h50

RL21 S RL

h D S RR21
RL212hD yh,

1

Z
SRL5RLkR0k0LkLR

RL kRL
RL21kRR

DR(
h50

RL S RL21
h D S RR

RL2hD yh,

1

Z
SRR5RRkR0k0RkLR

RL kRL
RL kRR

DR21(
h50

RL S RL

h D S RR21
RL2hD yh.

These sums can be expressed in terms of Jacobi polynom
Pn

(a,b) by employing their explicit representation@20#

(
k50

n S n1a
k D S n1b

n2k D yk5~y21!nPn
~a,b!S y11

y21D ~58!

and their recurrence relations@20#. Moreover, one easily see
from the definition~42! together with Eq.~38! that

kR0512kL0 , kLL512kRL , kRR512kLR , ~59!

whencekR0, kLL , andkRR can be substituted. Using the a
breviation

z:5
y11

y21
5

2kLRkRL

12kLR2kRL
11, ~60!

the final result is

p~x0ua0!5~12kLR2kRL!
RL~12kLR!DRS k00PRL

~0,DR!~z!

1RLkL0k0L

RLPRL

~0,DR!~z!1RRPRL21
~0,DR!~z!

~RL1RR!~12kRL!

1RRkL0k0R

RLPRL

~0,DR!~z!2RLPRL21
~0,DR!~z!

~RL1RR!kLR

1RL~12kL0!k0L

RRPRL

~0,DR!~z!2RRPRL21
~0,DR!~z!

~RL1RR!kRL

1RR~12kL0!k0R

RRPRL

~0,DR!~z!1RLPRL21
~0,DR!~z!

~RL1RR!~12kLR!
D .

~61!

Summarizing, Eq.~61! gives the propagator of a tagge
particle in a single-file system under the following cond
tions. The tagged particle starts at the initial coordinatea0. It
hasRL neighboring particles to the left whose initial coord
nates are randomly distributed according to a common p
als

b-

ability density%L(aj ua0). Likewise, it hasRR neighbors to
the right, initially distributed according to a densit
%R(aj ua0). The motion of all individual particles is deter
mined by the isolated-particle propagatorf (xua) and by the
hard-core interaction between adjacent particles. These q
tities represent the input of Eq.~61!, entering p(x0ua0)
through the auxiliary quantitieskL0 ,k00,k0L ,k0R ,kLR ,kRL ,
andz as defined by Eqs.~42! and ~60!, respectively.

D. Example: The infinite channel

In order to illustrate and check the general result~61!,
consider the special case of a homogeneous infinite cha
with the isolated-particle propagatorf i(xua) according to Eq.
~5!. Without loss of generality,a050 can be assumed. Th
left and right neighbors of the tagged particle initially a
uniformly distributed over finite intervals of lengthsLL and
LR , respectively. The initial densities are therefore given

%L~au0!5H 0, a,2LL

1/LL , 2LL<a<0,

%R~au0!5H 1/LR , 0<a<LR

0, a.LR .
~62!

According to these choices, the auxiliary quantities can
calculated due to their definition~42! by introducing Eqs.
~5!, ~6!, and~62! and using Eqs.~A4! and ~A5!:

k0L~x0u0!5
1

LL
E

2LL

0

f i~x0ua!da5
1

LL
@G~x01LL!2G~x0!#,

kRL~x0u0!5
1

LL
E

2LL

0

@12gi~x0ua!#da

512
1

LL
@L~x01LL!2L~x0!#,

kL0~x0u0!5gi~x0u0!5G~x0!, ~63!

k00~x0u0!5 f i~x0u0!5F~x0!,

kLR~x0u0!5
1

LR
E

0

LR
gi~x0ua!da5

1

LR
@L~x0!2L~x02LR!#,

k0R~x0u0!5
1

LR
E

0

LR
f i~x0ua!da5

1

LR
@G~x0!2G~x02LR!#.

@The explicit forms of the analytical functionsF, G, andL
are given by Eqs.~A1!, ~A2!, and~A3!, respectively.# Intro-
ducing these expressions into Eq.~61! yields the resulting
propagatorpi(x0u0).

An example of this propagator for special values of t
parametersRL , LL , RR , andLR is presented in Fig. 1. The
analytical curve due to Eqs.~61! and ~63! is compared with
the result of a Monte Carlo computer simulation. Like in a
examples of this paper, the simulations were carried out o
lattice with ten points per unit length. Considering that poi
like particles have to be simulated, neighboring partic
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were allowed to occupy the same lattice site but, of cou
they could never change their order. The simulated propa
tors represent relative occurrences based on an ensemb
10 000 independent identical systems. The coincidence
the simulated and the calculated propagators was che
successfully in the standard way by ax2 test of goodness o
fit with the significance levela50.01.

Similar calculations can be done on the basis of the pro
gators f rr (xua) @Eq. ~10!# or f aa(xua) @Eq. ~13!# for finite
channels with reflecting or absorbing boundaries, resp
tively. Although, in these cases, the reflection principle
used twice~first in accounting for the boundaries and seco
in accounting for the single-file confinement!, there is no
disturbing interference between both kinds of reflect
planes in the state spaceS. This follows from the genera
validity of the presented calculation, but may also be reali
explicitly by geometrical arguments.

E. Symmetric systems

All special channels considered in Sec. II possess a s
metry point at a certain positionS where the propagator ca
be reflected,

f ~2S2xu2S2a!5 f ~xua!. ~64!

~For the finite channels, this symmetry point lies in the cen
S5L/2, while for the infinite homogeneous channelS can be
set at any position.! If the initial distribution of the particles
is symmetric as well,

%L~2S2au2S2a0!5%R~aua0!, ~65!

the calculation can be simplified using the relations

k0L~x0ua0!5k0R~2S2x0u2S2a0!, ~66!

kRL~x0ua0!5kLR~2S2x0u2S2a0!,

FIG. 1. Example: propagatorpi(x0ua0) of a tagged particle in an
infinite single file at time 4Dt5100. The tagged particle starts
a050, surrounded byRL52 left neighbors~initially distributed
over the interval@22,0#! andRR58 right neighbors~initially dis-
tributed over the interval@0,8#!. As expected, there is a drift to th
left because at this side there are fewer particles plugging up
way of the tagged particle.
e,
a-
of

of
ed

a-

c-
s
d

d

-

r

which follow from the definitions~42! using the identity
g(2S2xu2S2a)512g(xua) according to Eqs.~2! and
~64!. In this case, therefore, it suffices to calculate the qu
tities k00,kL0 ,k0R , and kLR . Note that this is true even i
RLÞRR .

IV. THE SINGLE-FILE SYSTEM WITH INFINITELY
MANY PARTICLES

A. Fourth step: The limit

So far, a system containing a givenfinite number of par-
ticles was considered. In many applications, including
examples indicated in the Introduction, however, the num
of particles is infinite. The strategy to obtain the propaga
in these cases is first to consider an auxiliary system wit
finite number of particles and then to take the limit of t
propagator if the number of particles tends to infinity. O
course, the auxiliary system has to be designed in such a
that the quantitiesRL%L(aj ua0) and RR%R(aj ua0) tend, in
this limit, to the given initial particle concentration of th
considered system. This has to be ensured by a suitable
pendence of the initial distributions%L(aj ua0) and
%R(aj ua0) on the number of particles. Moreover, in som
applications also the isolated-particle propagatorf (xua) has
to depend in a suitable way on the number of particles
order to prevent the final concentration~after infinite time!
from diverging. The general calculation in the present s
tion assumes that this is fulfilled.

In the limit of an infinite number of particles, any~finite!
differenceDR between the numbers of the left and the rig
neighbors becomes irrelevant. Thus one can set

RL5RR5:R. ~67!

The propagator~61! then simplifies to

p~x0ua0!5~12kLR2kRL!
RS k00PR~z!

1kL0Rk0L

PR~z!1PR21~z!

2~12kRL!

1kL0Rk0R

PR~z!2PR21~z!

2kLR

1~12kL0!Rk0L

PR~z!2PR21~z!

2kRL

1~12kL0!Rk0R

PR~z!1PR21~z!

2~12kLR! D , ~68!

where the Jacobi polynomials have become Legendre p
nomialsPR . In order to take the limit of this expression w
define quantitiesm as the limits of the auxiliary quantitiesk
if the number of particles tends to infinity,

mL0 :5 lim
R→`

kL0 , m00:5 lim
R→`

k00, ~69!

and quantitiesq as the limits ofRk,

he
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q0L :5 lim
R→`

Rk0L , q0R :5 lim
R→`

Rk0R ,

qLR :5 lim
R→`

RkLR , qRL :5 lim
R→`

RkRL , ~70!

and assume that all these limits exist. The existence ofqLR
andqRL implies

lim
R→`

kLR50, lim
R→`

kRL50. ~71!

For an arbitraryR-dependent quantityk5k(R) one has

lim
R→`

~11k!R5exp~q! with q5 lim
R→`

Rk ~72!
if the limit q exists. In this way, one obtains the limit of th
first part of the expression~68!,

lim
R→`

~12kLR2kRL!
R5exp~2qLR2qRL!. ~73!

The limit of the Legendre polynomial can be found v
the integral representation@21#

PR~z!5
1

pE0

p

~z6Az221cosw!Rdw. ~74!

Inserting Eq.~60!, the integrand becomes
~z6Az221cosw!R5S 11
2kLRkRL62A~12kLR!~12kRL!kLRkRLcosw

12kLR2kRL
D R

. ~75!

In order to get the limit of this expression one computes, according to Eq.~72!,

lim
R→`

R
2kLRkRL62A~12kLR!~12kRL!kLRkRLcosw

12kLR2kRL
52AqLRqRLcosw,

where Eq.~71! was used, and obtains

lim
R→`

PR~z!5
1

pE0

p

e2AqLRqRLcoswdw. ~76!

This coincides with the integral representation of the modified Bessel functionsI n @20#:

I n~x!5
1

pE0

p

excoswcos~nw!dw. ~77!

The result therefore reads

lim
R→`

PR~z!5 lim
R→`

PR21~z!5I 0~2AqLRqRL!. ~78!

A final difficulty arises from the fact that the fractions in lines 3 and 4 of Eq.~68! yield, in the limit, the indefinite
expression 0/0@cf. Eqs.~71! and ~78!#. Using the integral representation~74! again one obtains in line 4

PR~z!2PR21~z!

2kRL
5

1

pE0

p~z6Az221cosw!R

z6Az221cosw

~z6Az221cosw!21

2kRL
dw. ~79!

The limit of the second fraction of the integrand becomes

lim
R→`

~z6Az221cosw!21

2kRL
5 lim

R→`

kLR1A~12kLR!~12kRL!
kLR

kRL
cosw

12kLR2kRL
5AqLR

qRL
cosw, ~80!
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while the limit of the denominator of the first fraction, due to Eq.~75!, becomes 1. As before, the result turns out to be

lim
R→`

PR~z!2PR21~z!

2kRL
5AqLR

qRL

1

pE0

p

e2AqLRqRLcosw cosw dw5AqLR

qRL
I 1~2AqLRqRL!. ~81!
tin
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The analogous calculation has to be done in line 3. Inser
Eqs.~73!, ~78!, and~81! into Eq. ~68! yields the final result

lim
R→`

p~x0ua0!5exp~2qLR2qRL!F @m001mL0q0L1~1

2mL0!q0R#I 0~2AqLRqRL!1S mL0q0RAqRL

qLR

1~12mL0!q0LAqLR

qRL
D I 1~2AqLRqRL!G .

~82!

Summarizing, Eq.~82! gives the propagator of a tagge
particle in the single-file system, surrounded by infinite
many neighboring particles. In order to obtain this propa
tor, one has to consider an auxiliary system with a fin
number of particles and take the limit as the number of p
ticles tend to infinity. If the limits in Eqs.~69! and~70! exist
the particle density is sure to remain finite in the limit a
the limiting propagator exists.

For symmetric systems obeying Eqs.~64! and ~65! the
calculation simplifies, as in the case of finitely many p
ticles, according to

q0L~x0ua0!5q0R~2S2x0u2S2a0!,

qRL~x0ua0!5qLR~2S2x0u2S2a0!, ~83!

whence only the quantitiesm00, mL0, q0R , andqLR are re-
quired.

B. Example: The infinite channel

As announced in the Introduction, the result~82! shall be
applied to the infinite, homogeneous, uniformly occup
single file ~example 1!. As the auxiliary system one can us
the system considered in Sec. III D: The infinite channel w
the isolated-particle propagatorf i(xua) due to Eq.~5! where
the particles initially are uniformly distributed within finit
intervals to the left- or right-hand side of the initial positio
a050 of the tagged particle due to Eq.~62!. If one sets

LL5LR5R/c, ~84!

with an R-independent constantc, this auxiliary system be-
comes, in the limitR→`, infinite with a homogeneous con
centration ofc particles per unit length.

Obviously, this system fulfills the symmetry relations~64!
and ~65! with S50. In order to get the propagator of th
tagged particle in this infinite system, according to Sec. IV
one has to calculate the quantitiesm00, mL0, q0R , andqLR
g

-
e
r-

-

h

for the special choices off (xua), %L(aua0), and%R(aua0) in
the present case, which is done using Eqs.~63!, ~84!, and
~A9!:

m005 lim
R→`

k005F~x0!,

mL05 lim
R→`

kL05G~x0!,

q0R5 lim
R→`

Rk0R5cG~x0!,

qLR5 lim
R→`

RkLR5cL~x0!.

These expressions are inserted into Eqs.~82! and~83!. Using
Eq. ~A7!, the final result reads

pI~x0u0!5exp$2c@L~x0!1L~2x0!#%F @F~x0!

12cG~x0!G~2x0!#I 0@2cAL~x0!L~2x0!#

1cS G2~x0!AL~2x0!

L~x0!
1G2~2x0!

3A L~x0!

L~2x0!
D I 1@2cAL~x0!L~2x0!#G . ~85!

Let us consider the asymptotic behavior of the propaga
if the mean distance that an isolated particle would ha
moved is still very small or already very large in comparis
to the mean distance between adjacent particles. In the
caseA4Dt!1/c, the isolated particle has most probably n
yet ‘‘felt’’ any influence by neighboring particles. This situ
ation occurs for a very small observation timet, a very low
diffusivity D, or a very low particle concentrationc. It will
be referred to as a short-time limit~though it could, of
course, equally be termed a low-diffusivity limit or low
concentration limit!. In the opposite caseA4Dt@1/c, the
long-time limit, the interactions of the tagged particle wi
its neighbors predominate its propagation. This should oc
after a long observation time, at very rapid diffusion, or in
very crowded channel. In addition to the asymptotic form
the propagator, we are particularly interested in the me
square displacement of the tagged particle,

^x0
2&5E

2`

`

x0
2pI~x0u0!dx0 , ~86!

because of its central relevance for the observation of di
sion phenomena@10,22#.
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The discussion can be facilitated if the mean distance
tween adjacent particles 1/c is taken as the unit of the lengt
scale: The coordinatex0 is replaced by the scaled displac
ment x̃05cx0 and the diffusion coefficientD by D̃5c2D,
while the concentration parameter vanishes,c̃51. Thus the
case of an arbitrary concentration can be mapped onto
casec51. This implies that one may assumec'1 in all
order-of-magnitude estimations.

In the short-lime limit, the tagged particle is expected
behave like an isolated particle. To check this, take, with
loss of generality,x0>0. For 4Dt!1 one has, according to
Eqs. ~A2! and ~A3!, G(x0)'1, G(2x0)'0, L(x0)'x0,
L(2x0)'0, I 0'1, andI 1'0 and the propagator become

pI~x0u0!'exp~2cux0u!F~x0!'F~x0!5 f i~x0u0!,

where the second approximation follows fromcux0u
!x0

2/4Dt in the exponent. Thus the propagator of the tagg
particle can indeed be approximated by the propagator of
free particle, which is a Gaussian with the mean-square
placement

^x0
2&52Dt. ~87!

In order to obtain an approximation of the propagator
the opposite case, the long-lime limit, write Eq.~85! in an
alternative way by splitting the exponential term into tw
parts and attaching one of them to the Bessel functions:

pI~x0u0!5exp$2c@AL~x0!2AL~2x0!#2%cF S F~x0!

c

12G~x0!G~2x0! De2lI 0~l!S G2~x0!
AL~2x0!

AL~x0!

1G2~2x0!
AL~x0!

AL~2x0!
D e2lI 1~l!G , ~88!

with l:52cAL~x0!L~2x0!.

Then investigate the behavior of the functionsF, G, andL
for 4Dt@1. For any coordinatex0 the relation

j:5
x0

A4Dt
!1 ~89!

holds as soon as 4Dt becomes sufficiently large. Then th
functions can be expanded,

F~6x0!5
1

ApA4Dt
@11O~j2!#, ~90!

G~6x0!5
1

2S 16
2

Ap
j1O~j2!D , ~91!

L~6x0!5
A4Dt

2Ap
@16Apj1O~j2!#, ~92!
e-

he

t

d
e

s-

AL~6x0!5AA4Dt

2Ap
S 16

Ap

2
j1O~j2! D . ~93!

Turning to the large square brackets of Eq.~88!, one ob-
serves that all termsG(6x0) become approximately 1/2
Compared with this, the termF(x0) can be canceled due t
A4Dt in the denominator. The fraction
AL(6x0)/AL(7x0) tend to 1 and therefore vanish as we
The only surviving contributions are the Bessel function
which can be approximated according toe2lI n(l)
'1/A2pl, valid for largel, becausel increases witht. If
the expansion ofAL(6x0) due to Eq.~93! is inserted intol
and into the exponential factor of Eq.~88! one arrives at

pI~x0u0!'
1

A2p
A4Dt

cAp

expS 2
x0

2

2
A4Dt

cAp

D , ~94!

which is nothing but a Gaussian with the mean-square
placement

^x0
2&5

1

Apc
A4Dt. ~95!

This finding coincides, as expected, with the asymptotic
havior given in@7# for the propagator derived there.

Thus we have confirmed that both for small and for lar
observation times the propagator of the tagged particle in
infinite single-file channel tends to a Gaussian with a me
square displacement according to Eq.~87! or ~95!, respec-
tively. However, Eq.~85! is valid at intermediate observatio
times as well. Figure 2 shows the mean-square displacem
obtained by numerical integration according to Eqs.~85! and
~86!, as a function of the scaled observation time. The fig
clearly shows the transition between the two limiting r
gimes of propagation, which are indicated by the brok
lines. @If the calculation were based on the telegraphe
equation ~7! rather than the diffusion equation~3!, there

FIG. 2. Mean-square displacement of a tagged particle in
infinite single file, homogeneously occupied withc51 particles per
unit length. The broken lines 2Dt andA4Dt/Ap, respectively, in-
dicate the asymptotic behavior.
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would be two superimposing transitions: first, from the b
listic to the diffusive behavior of the isolated particles an
second, as described, from the free to the single-file beh
ior.# In order to assess the deviation of the propaga
pI(x0u0) from a Gaussian with identical mean-square d
placement, one inspects in Fig. 3 its excess

«5
^x0

4&

^x0
2&2

23 ~96!

presented over the same range of observation times as in
2. Obviously, the maximal deviation occurs roughly halfw
through the transition. The explicit form of the propagator
this maximum is given in Fig. 4 and compared with t
corresponding Gaussian. Obviously, the difference betw
both curves is rather small. If, therefore, the propagato
fitted to experimental data whose error is larger than
difference, it can, for all observation times, be approxima
by a Gaussian.

FIG. 3. Excess« of the propagatorpI(x0u0) with c51 as a
function of the observation time, expressing the deviation of
propagator from a Gaussian of identical variance.

FIG. 4. Example: propagatorpI(x0u0) of a tagged particle in an
infinite single file, homogeneously occupied withc51 particles per
unit length, at time 4Dt56.5 ~solid line!, compared with a Gauss
ian of identical variance~broken line!. At this time, the excess« of
the propagator is maximal.
-
,
v-
r
-

ig.

t

n
is
is
d

As in Sec. III D, the result~85! was checked by compari
son with computer simulations via ax2 test. In the simula-
tion, the infinite channel was approximated by 1000 neig
boring particles on either side.

C. Example: Absorbing boundaries

Let us now turn to the finite channel with absorbin
boundaries~cf. example 2 in the Introduction!. Though the
number of particles within this finite channel is, of cours
finite, the initial equilibration with the infinite particle rese
voir involves an infinite number of particles. Moreover, sin
the particle concentrationc ~rather than the number of par
ticles! within the channel is given, the actual number is
lowed to fluctuate around the average valuecL. This can
only be accounted for by considering an infinite number
particles. Thus this example demonstrates that the limi
infinitely many particles can be essential even for fin
single-file channels.

The system can be modeled as follows. Initially, a sm
~finite! number of particles is placed into the channel in su
a way that it builds up the homogeneous particle concen
tion c, while the ~infinite! rest is placed into the reservo
outside the file. Fort>0 when the desorption process h
started, the individual particles behave according to
isolated-particle propagatorf aa(xua) considered in Sec. II D:
As soon as a particle reaches one of the boundaries,
swallowed by the vacuum and will never return.

In the auxiliary system, where the number of particles
finite, we adjust the initial densities in such a way that t
particle concentration within the file has its given valuec,
while the ~still finite! rest of the particles are placed in th
reservoirs:

%L~aua0!5H . . . , 0,a

c/R, 0<a<a0

%R~aua0!5H c/R, a0<a<L

. . . , L,a
; ~97!

the ellipses stand for arbitrary distributions outside the ch
nel ensuring Eq.~38!, which will not enter into the result
Again, the system is symmetrical, whereS5L/2. With
f aa(xua) due to Eq.~13!, gaa(xua) due to Eq.~15!, and these
initial densities one has~for 0<x0<L)

k00~x0ua0!5 f aa~x0ua0!,

kL0~x0ua0!5gaa~x0ua0!,

k0R~x0ua0!5
c

REa0

L

f aa~x0ua!da1E
L

`

f aa~x0ua!•••da,

~98!

kLR~x0ua0!5
c

REa0

L

gaa~x0ua!da1E
L

`

gaa~x0ua!•••da.

The ellipses are the arbitrary distribution from Eq.~97!. The
terms containing them vanish becausef aa(x0ua)50 and
gaa(x0ua)50 for a.L according to Eqs.~13! and ~15!.

e
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Now the limit R→` is performed. With Eqs.~69! and
~70! one calculates

m00~x0ua0!5 f aa~x0ua0!,

mL0~x0ua0!5gaa~x0ua0!,

q0R~x0ua0!5cE
a0

L

f aa~x0ua!da, ~99!

qLR~x0ua0!5cE
a0

L

gaa~x0ua!da,

where the integrals are given by (0<x0<L)

E
a0

L

f aa~x0ua!da5 (
k52`

`

@G~x02a022kL!2G~x02L

22kL!1G~x01a022kL!

2G~x01L22kL!#, ~100!

E
a0

L

gaa~x0ua!da5 (
k50

`

@L~2x01a012kL!1L~x01a0

12kL!1L~2x012L2a012kL!

1L~x012L2a012kL!22L~2x01L

12kL!22L~x01L12kL!#. ~101!

If this is introduced into Eq.~82! one obtains the searche
propagatorpAA(x0ua0). As in Sec. III D, an example is given
graphically in Fig. 5 and compared with computer simu
tions. Once more, thex2 test confirms the coincidence.

The propagator can be used to calculate the probab
that a particular particle is, at a given time, still inside t
channel. Assuming that the considered particle starts
positiona0, this probability is given by

FIG. 5. Example: propagatorpAA(x0ua0) of a tagged particle in
a finite single file of lengthL510 with two absorbing boundaries
initially homogeneously occupied withc51 particles per unit
length, at time 4Dt510. The tagged particle starts ata052.
-

ty

a

P~a0 ,t !5E
0

L

pAA~x0ua0!dx0 . ~102!

For the special valueL5100, a0550 ~the particle starts in
the channel center!, it is shown in Fig. 6 as a function of time
~rightmost solid curve!. For comparison, the correspondin
probability F(a0 ,t) for a free particle is given~broken
curve!, which can be calculated via an integral similar to E
~102! using the isolated-particle propagatorf aa(x0ua0) rather
than the single-file propagatorpAA(x0ua0). As expected, the
free particle leaves, on average, the channel much ea
than the particle subject to single-file confinement. Intere
ingly enough, also the opposite situation occurs, as is sh
by the left two curves in Fig. 6. In this case, the particles s
at a position closer to the boundary,a0520. While the un-
restricted particle is free to move towards the channel ce
where it is far from the absorbing boundary, the single-fi
particle is not able to leave the vicinity of the bounda
whence it eventually has a greater chance to be absor
This is illustrated in more detail by Fig. 7, where the pro
abilities P(a0 ,t) and F(a0 ,t) for the single-file or the free
particle, respectively, are compared at a fixed time depen
on their starting positiona0. The crossover of the two curve
is, however, not surprising: As already mentioned in the
troduction, the total mass transport is not influenced by
single-file confinement, so that the mean number of rema
ing particles within the channel is insensitive to whether
not the particles are able to change their order. This imp
that the integrals over both profiles of Fig. 7 are equal,

cE
0

L

P~a0 ,t !da05cE
0

L

F~a0 ,t !da0 . ~103!

The quantitative result presented in Fig. 7 shows that
release of particles from a single-file channel depends m
more pronouncedly on their initial positions than in the ca
of noninteracting particles. This is a characteristic feature

FIG. 6. Probability that a given particle is still inside a fini
channel of lengthL5100 with absorbing boundaries. Initially, th
channel is occupied withc51 particles per unit length. The tagge
particle is identified according to its starting position~herea0550
or a0520, respectively!. The situation in single-file systems~solid
lines! is compared with the case of noninteracting particles~broken
lines!.
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4396 57CHRISTIAN RÖDENBECK, JÖRG KÄRGER, AND KARSTEN HAHN
single-file systems which could, e.g., be employed for
sequential release of several particle species if there is
initial spatial order of the species inside the channel.

V. CONCLUSION

The presented formalism yields exact expressions for
propagators of tagged particles in single-file systems. I
valid for arbitrary interactions between the particles and
channel, as described by the isolated-particle propag
f (xua), and for arbitrary initial distributions of the particle
as described by the probability densities%L(aua0) and
%R(aua0). The number of particles may be finite@Eq. ~61!#
or infinite @Eq. ~82!#. As examples, the infinite channel an
the finite channel with two absorbing boundaries were c
sidered. The validity of all explicit results was checked
comparison with propagators from computer simulations.
a further check for the homogeneously occupied infin
channel, the asymptotic behavior was compared with res
known from the literature.

In addition to the derivation of general expressions of
propagators, practical conclusions were drawn from the
sults. First, it was shown that the propagator of a tag
particle in an infinite, homogeneously occupied single
deviates, for all observation times, only slightly from
Gaussian. This justifies an assumption often made on ev
ating scattering experiments. Second, the release of part
from a finite single file can be investigated quantitative
One finds a characteristic, strong dependence on the in
positions of the particles within the channel. Particles fro
the channel center are released much more slowly tha
systems ruled by normal diffusion with equal length and d
fusivity.

The basic idea of the approach presented is to solve
diffusion equation~or any equivalent differential equation! in
the state spaceS of all particles, where the particle-particl

FIG. 7. Probability that a given particle is, at time 4Dt55000,
still inside a finite channel of lengthL5100 with absorbing bound
aries, dependent on its starting positiona0. If starting in the channel
center, the particle subject to single-file confinement~solid line! is
much less probably absorbed than the free particle~broken line!,
while the contrary situation is true for particles starting near
boundaries. Initially, the channel is occupied withc51 particles
per unit length.
e
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interaction is described by appropriate boundary conditi
~or, even more generally, by a total interaction potential inS
representing the sum of all pairwise particle-particle inter
tion potentials!. In the case of hard-core repulsion, the
boundaries are totally reflecting and can be accounted fo
the well-known reflection principle. Currently, we are inve
tigating the generalizations of this method to more comp
cated systems, including incomplete mutual repulsion of
particles and systems where the single-file behavior is
stricted to certain regions of thex axis.

If the particles cannot be considered pointlike, but hav
given radiusr , the reflection planes in the state spaceS have
to be translated. In this case, the treatment involves a
tional complications. For some systems, however, where
particle density does not change with time, the propaga
may approximately be corrected by an appropriate scalin
the x axis as suggested in@7#: If all the space occupied by
particles is cut out, a modified system with again pointli
particles is obtained. This can, on average, be done by s
ing the x axis by the factor 122rc giving the relative
amount of unoccupied space.
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APPENDIX

Because of their frequent use in the examples we de
the analytical functions

F~u!:5
1

A4pDt
expS 2

u2

4Dt D , ~A1!

G~x!:5
1

2F11erfS x

A4Dt
D G , ~A2!

L~x!:5
4Dt

2
F~x!1xG~x!, ~A3!

with the observation timet and the diffusion coefficientD as
parameters. Since these parameters exclusively occur in
form 4Dt, this expression can be considered as a sca
time, corresponding to twice the mean-square displacem
of an isolated particle at this physical timet in a homoge-
neous channel with the diffusion coefficientD; cf. Eq. ~87!.
The functions are related to each other by the integrals

E
2`

x

F~u!du5G~x!, ~A4!

e
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E
2`

x

G~u!du5L~x!. ~A5!

Moreover, they fulfill the relations

F~2u!5F~u!, ~A6!

G~2x!512G~x!, ~A7!
,

n-

e

L~2x!5L~x!2x. ~A8!

Their limits are

lim
x→2`

F~x!50, lim
x→2`

G~x!50, lim
x→2`

L~x!50.

~A9!
, J.
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